Муниципальное бюджетное образовательное учреждение «Степняковская средняя общеобразовательная школа»

Рассмотрено: Методический совет
МБОУ «Степняковская СОШ»
Протокол №1 от «28» августа 2023
УТВЕРЖДАЮ

Директор МБОУ «Степняковская СОШ» ______ Л. П. Крапивка Приказ № 054-ОД от «30» августа 2023

Дополнительная общеобразовательная общеразвивающая программа «Робототехника»

Направленность программы: техническая Уровень программы: стартовый Возраст обучающихся 7 - 16 лет Срок реализации программы:1 год (34 часа)

Составитель: педагог дополнительного

образования Неживой Николай Иванович

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» (далее Программа) имеет техническую направленность. Программа модифицированная, составлена на основе программы «Робототехника: конструирование и программирование» Филиппова С. А. (Сборник программ дополнительного образования), конструктора

«Базовый набор» LEGO® Education SPIKETM Primeв соответствии с современными требованиями к программам дополнительного образования.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настоящая общеобразовательная программа «Робототехника» предназначена для образовательных учреждений дополнительного образования детей.

Программа «Робототехника» составлена на основе нормативных документов:

Федерального Закона от 29.12.2012 № 273-ФЗ «Об образовании в РФ»;

Распоряжения Правительства РФ от 29 мая 2015 г. № 996-р «Об утверждении Стратегии развития воспитания в Российской Федерации на период до 2025 года»;

Федерального проекта «Успех каждого ребенка» национального проекта «Образование», утвержденного протоколом № 16 президиума Совета при Президенте РФ по стратегическому развитию и национальным проектам от24.12.2018;

Концепции развития дополнительного образования детей, утвержденной распоряжением Правительства РФ от 4 сентября 2014 г. №1276- р;

Приказа Министерства образования и науки Российской Федерации (Минобрнауки России) от 27.07.2022 г. № 629г. Москва «Об утверждении Порядка деятельности по дополнительным общеобразовательным программам»;

Письма Минобрнауки России от 18.11.2015 г. № 09-3242 «О методических рекомендациях по проектированию дополнительных общеобразовательных программ»;

Порядка организации и осуществления образовательной деятельности при сетевой форме реализации образовательных программ, утвержденный Приказом Министерства науки и высшего образования РФ и министерства просвещения РФ от 5 августа 2020 г № 882/391;

Приказа Минобрнауки РФ № 816 от 23.08.2017 «Об утверждении порядка применения организациями электронного обучения и дистанционных образовательных технологий при реализации образовательных программ»;

Порядка зачета организацией, осуществляющих образовательную деятельность, результатов освоения обучающимися учебных предметов, курсов, дисциплин (модулей), практики, дополнительных образовательных программ в других организациях, осуществляющих образовательную деятельность», утвержденный Приказом Министерства науки и высшего образования РФ и Министерства просвещения РФ от 30 июля 2020 г. № 845/369;

Постановления Главного государственного санитарного врача РФ от 04.07.2014 № 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно- эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей»;

Программа направлена на привлечение учащихся к современным технологиям конструирования, программирования и использования роботизированных устройств.

Новизна программы заключается в исследовательско-технической направленности обучения, которое базируется на новых информационных технологиях, что способствует развитию информационной культуры и взаимодействию с миром технического творчества. Авторское воплощение замысла в автоматизированные модели и проекты особенно важно для старших дошкольников, у которых наиболее выражена исследовательская (творческая) деятельность.

Детское творчество - одна из форм самостоятельной деятельности ребёнка, в процессе которой он отступает от привычных и знакомых ему способов проявления окружающего мира, экспериментирует и создаёт нечто новое для себя и других.

Техническое детское творчество является одним из важных способов формирования профессиональной ориентации детей, способствует развитию устойчивого интереса к технике и науке, а также стимулирует рационализаторские и изобретательские способности.

Актуальность Программы Воспитать поколение свободных, образованных, творчески мыслящих граждан возможно только в современной образовательной среде. Программа представляет учащимся технологии 21 века. Сегодняшним школьникам предстоит работать по профессиям,

которых пока нет, использовать технологии, которые еще не созданы, решать задачи, о которых мы можем лишь догадываться. Школьное образование должно соответствовать целям опережающего развития. Для этого в школе должно быть обеспечено изучение не только достижений прошлого, но и технологий, которые пригодятся в будущем, обучение, ориентированное как на знаниевый, так и деятельностный аспекты содержания образования. Таким требованиям отвечает робототехника.

Одним из динамично развивающихся направлений программирования является программное управление робототехническими системами. В период развития техники и технологий, когда роботы начинают применяться не только в науке, но и на производстве, и быту, актуальной задачей для занятий по «Робототехнике» является ознакомление учащихся с данными инновационными технологиями.

Робототехника - сравнительно новая технология обучения, позволяющая вовлечь в процесс инженерного творчества детей, начиная с младшего школьного возраста, что позволит обнаружить и развить навыки учащихся в таких направлениях как мехатроника, искусственный интеллект, программирование и т.д. Использование методик этой технологии обучения позволит существенно улучшить навыки учащихся в таких дисциплинах как математика, физика, информатика.

Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к познанию нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному созиданию.

Новые принципы решения актуальных задач человечества с помощью роботов, усвоенные в школьном возрасте (пусть и в игровой форме), ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам.

Отличительные особенности Программы

Программа имеет ряд отличий от уже существующих аналогов, которые предполагают поверхностное освоение элементов робототехники с преимущественно демонстрационным подходом к интеграции с другими предметами. Особенностью данной программы является нацеленность на конечный результат, т.е. обучающийся создает не просто внешнюю модель робота, дорисовывая в своем воображении его возможности, он создает действующее устройство, которое решает поставленную задачу.

Программа построена на обучении в процессе практики и позволяет применять знания из разных предметных областей, которые воплощают идею развития системного мышления у каждого учащегося, так как системный анализ — это целенаправленная творческая деятельность человека, на основе которой обеспечивается представление объекта в виде системы. Творческое мышление - сложный многогранный процесс, но общество всегда испытывает потребность в людях, обладающих нестандартным мышлением.

Учебный план Программы связан с мероприятиями в научно-технической сфере для детей (турнирами, соревнованиями), что позволяет, не выходя за рамки учебного процесса, принимать активное участие в конкурсах различного уровня.

Адресат программы

Возраст детей, участвующих в реализации данной программы 7-16 лет. Основнымвидом деятельности детей этого возраста является обучение, содержание и характер которого существенно изменяется. Ребёнок приступает к систематическому овладению основами разных наук и особенно ярко проявляет себя во внеучебной деятельности, стремится к самостоятельности. Он может быть настойчивым, невыдержанным, но, если деятельность вызывает у ребёнка положительные чувства появляется заинтересованность, и он более осознанно начинает относиться к обучению.

Учащиеся начинает руководствоваться сознательно поставленной целью, появляется стремление углубить знания в определенной области, возникает стремление к самообразованию. Учащиеся начинают систематически работать с дополнительной литературой.

В объединение принимаются мальчики и девочки 10-14 лет, проявившие интерес к изучению робототехники, специальных способностей в данной предметной области не требуется.

Срок реализации программы 1 год. На обучение отводится 34 часа - 1 занятие в неделю по 1 часу (45 мин).

В первый год учащиеся проходят курс конструирования, построения механизмов с электроприводом, а также знакомятся с основами программирования контроллеров базового набора, основами теории автоматического управления. Изучают интеллектуальные и командные игры роботов.

Форма обучения очная.

Форма проведения занятий планируется как для всей группы (групповая) - для освещения общих теоретических и других вопросов, передача фронтальных знаний, так и мелкогрупповые по 2-3 человека для индивидуального усвоения полученных знаний и приобретения практических навыков. Это позволяет дифференцировать процесс обучения, объединить такие противоположности, как массовость обучения и его индивидуализацию

Цель: создание условий развития конструктивного мышления ребёнка средствами робототехники, формирование интереса к техническим видам творчества, популяризация инженерных специальностей

Задачи:

Личностные

воспитание коммуникативных качеств посредством творческого общения учащихся в группе, готовности к сотрудничеству, взаимопомощи и дружбе;

- воспитание трудолюбия, аккуратности, ответственного отношения к осуществляемой деятельности;
- формирование уважительного отношения к труду;
- развитие целеустремленности и настойчивости в достижении целей. Метапредметные
- умение организовать рабочее место и соблюдать технику безопасности;
- умение сопоставлять и подбирать информацию из различных источников (словари, энциклопедии, электронные диски, Интернет источники);
- умение самостоятельно определять цель и планировать алгоритм выполнения задания; умение проявлять рационализаторский подход при выполнении работы, аккуратность; умение анализировать причины успеха и неудач, воспитание самоконтроля.
- умение излагать мысли в четкой логической последовательности, отстаивать свою
- точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- понимание основ физики и физических процессов взаимодействия элементов конструктора.

предметные

- познакомить с конструктивными особенностями и основными приемами конструирования различных моделей роботов, компьютерной средой, включающей в себя графический язык программирования LEGO Education SPIKE Prime;
- научить самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные
- знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);
- научить создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу,
- научить разрабатывать и корректировать программы на компьютере для различных роботов;

СОДЕРЖАНИЕ УЧЕБНОГО ПЛАНА ПРОГРАММЫ

1. Вводное занятие:

Информатика, кибернетика, робототехника. Инструктаж по ТБ.

2. Основы конструирования

Теория: Простейшие механизмы. Хватательный механизм. Принципы крепления деталей. Рычаг. Виды механической передачи: зубчатая передача: прямая, коническая, червячная. Передаточное отношение. Ременная передача, блок. Повышающая передача. Волчок. Понижающая передача. Силовая «крутилка». Редуктор. Осевой редуктор с заданным передаточным отношением. Колесо, ось. Центр тяжести.

Практика: Решение практических задач. Строительство высокой башни. Измерения.

3. Введение в робототехнику

Теория: Знакомство с контроллером **Smart hub.** Встроенные программы. Датчики. Среда программирования Scratch. Стандартные конструкции роботов. Колесные, гусеничные и шагающие роботы. Следование по линии. Путешествие по комнате. Поиск выхода из лабиринта. **Практика:** Решение простейших задач. Цикл, Ветвление, параллельные задачи. Кегельринг

4. Основы управления роботом

Теория: Релейный и пропорциональный регуляторы. Эффективные конструкторские и программные решения классических задач. Эффективные методы программирования: регуляторы, защита от застреваний, траектория с перекрестками, события, пересеченная местность. Обход лабиринта по правилу

правой руки. Синхронное управление двигателями. *Практика:* параллельные задачи, подпрограммы, контейнеры и пр. Анализ показаний разнородных датчиков. Робот-барабанщик

5. Состязания роботов. Игры роботов.

Теория: Футбол с инфракрасным мячом (основы).

Практика: Боулинг, футбол, баскетбол, командные игры с использованием инфракрасного мяча и других вспомогательных устройств. Использование удаленного управления. Проведение состязаний, популяризация новых видов робото-спорта. «Царь горы». Управляемый футбол роботов. Теннис роботов **Теория:** Использование микроконтроллера **Smart hub.**

Практика: Подготовка команд для участия в состязаниях (Сумо. Перетягивание каната. Кегельринг. Следование по линии. Слалом. Лабиринт) Регулярные поездки.

6. Творческие проекты

Теория: Одиночные и групповые проекты.

Практика: Разработка творческих проектов на свободную тему. Роботы помощники человека. Роботыартисты

7. Безопасное поведение на дорогах. *Теория:* Беседа о ситуации на

дорогах, виде транспортных средств.

Практика: Викторины, настольные игры по безопасному поведению на дорогах («Мы спешим в школу», «Веселый пешеход»). **ОБЖ. Темы бесед.**

- 1. Вредные привычки и их влияние на здоровье.
- 2. Профилактика ДДТП
- 3. Поведение во время пожара.
- 4. О терроризме
- 5. Поведение на водоеме. Инструктаж по ТБ.

Теория: Цикл бесед о правилах поведения на занятии и работы на компьютере. **Практика:** Зачёт по прослушанному материалу.

Итоговое занятие Обсуждение работы объединения за учебный год. Демонстрация изготовленных конструкций.

Итоговая аттестация: Обсуждение работ за учебный год. Демонстрация изготовленных конструкций.

Содержание программы Название раздела, темы № п/п Количество часов Формы аттестации/ Всего Теория Практика контроля Вводное занятие Что такое "Робот". Виды, значение в 1 1 Ответы на вопросы во современном мире, основные время беседы. Зачет по ТБ направления применения. Состав конструктора, правила работы. Входное тестирование. Основы конструирования 2 Проект. Этапы создания проекта. Индивидуальный, Оформление проекта. фронтальный опрос 3 Ознакомление с визуальной средой Индивидуальный, программирования Scratch. фронтальный опрос Интерфейс. Основные блоки. Введение в робототехнику. Знакомство с роботами Обзор модуля Smart hub. Экран, 4 1 Практическая работа кнопки управления, индикатор состояния, порты. 5 Обзор сервомоторов EV3, их 1 1 Практическая работа

	характеристика. Сравнение				
	основных показателей (обороты в				
	минуту, крутящий				
	момент, точность). Устройство,				
	режимы работы.	1		1	П
6	Сборка модели робота по инструкции	1		1	Практическая работа
7	Обзор датчика касания. Устройство, режимы работы	1		1	Практическая работа
8	Обзор гироскопического датчика.	1		1	Практическая работа
9	Устройство, режимы работы. Обзор датчика света. Устройство,	1		1	Променностья
	режимы работы			1	Практическая работа
10	Обзор ультразвукового датчика. Устройство, режимы работы. Проверочная работа на тему: "Характеристики и режимы работы активных компонентов"	1		1	Практическая работа
11	Движения по прямой траектории.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
12	Точные повороты.	1		1	Практическая работа, собранная модель, выполняющая
					предполагаемые действия
10		не роботов. Е	виды робото	T .	
13	Движения по кривой траектории.			1	Практическая работа,
	Расчёт длинны пути для каждого				собранная модель,
	колеса при повороте с заданным				выполняющая предполагаемые действия
14	радиусом и углом. Игра "Весёлые старты". Зачет	1		1	Соревнование роботов
17	времени и количества ошибок				Соревнование росотов
15	Захват и освобождение "Кубойда".	1		1	Практическая работа,
	Механика механизмов и машин.				собранная модель,
	Виды соединений и передач и их				выполняющая
	свойства.				предполагаемые действия
16	Решение задач на движение с	1		1	Практическая работа,
	использованием датчика касания.				собранная модель,
					выполняющая
1.7	<i>p</i>	1		1	предполагаемые действия
17	Решение задач на движение с	1		1	Практическая работа, собранная модель,
	использованием датчика света.				выполняющая
	Изучение влияния цвета на освещенность				предполагаемые действия
18	Решение задач на движение с	1		1	Практическая работа,
10	использованием гироскопического				собранная модель,
	датчика.				выполняющая
					предполагаемые действия
19	Решение задач на движение с	1		1	Практическая работа,
	использованием ультразвукового				собранная модель,
	датчика расстояния.				выполняющая
					предполагаемые действия
20	Программирование с помощью	1		1	Практическая работа,
	интерфейса модуля. Контрольный				собранная модель,
	проект на тему: «Разработка				выполняющая
	сценария движения с				предполагаемые действия
	использованием нескольких				
21	Датчиков»				Company
21	Битва роботов	1		1	Соревнование роботов
22	Многозадачность. Понятие	1		1	Практическая работа,
	параллельного программирования.				собранная модель, выполняющая
					предполагаемые действия
					предполагаемые деиствия

	Итого часов	34	2	32	сооственного проскта
34	Защита проекта «Мой собственный уникальный робот»	1			Выступление с защитой собственного проекта
33	Реакция робота на звук, цвет, касание. Таймер.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
32	Измерение расстояний до объектов. Сканирование местности.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
31	Измерение освещенности. Определение цветов. Распознавание цветов. Использование конструктора Lego в качестве цифровой лаборатории.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
30	Правила соревнований. Работа над проектами «Движение по заданной траектории», «Кегельринг». Соревнование роботов на тестовом поле.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
28 29	Динамическое управление Битва роботов	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия Соревнование роботов
27	Многопозиционный переключатель. Условия выбора.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
26	Многопозиционный переключатель. Условия выбора.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
25	Многопозиционный переключатель. Условия выбора.	1		1	Практическая работа, собранная модель, выполняющая предполагаемые действия
24	Оператор выбора (переключатель). Условия выбора.	1	роскты	1	Практическая работа, собранная модель, выполняющая предполагаемые действия
		ворческие п	IDOOLETI I		предполагаемые действия
23	Оператор цикла. Условия выхода их цикла. Прерывание цикла.	1		1	Практическая работа, собранная модель, выполняющая

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

В процессе реализации образовательной программы, обучающиеся получают определенный объем знаний, приобретают специальные умения и навыки, происходит воспитание и развитие личности.

- личностные результаты:

- проявляет такие коммуникативными качествами как готовность к сотрудничеству и взаимопомощи и умение к созидательной коллективной деятельности;
- проявляет трудолюбие, ответственность по отношению к осуществляемой деятельности;
- проявляет целеустремленность и настойчивость в достижении целей.

- метапредметные результаты:

- умеет организовать рабочее место и содержит конструктор в порядке, соблюдает технику безопасности; умеет работать с различными источниками информации;
- умеет самостоятельно определять цель и планировать пути ее достижения;

- проявляет гибкость мышления, способность осмысливать и оценивать выполненную работу, анализировать причины успехов и неудач, обобщать;
- умеет проявлять рационализаторский подход и нестандартное мышление при выполнении работы, аккуратность;
- умеет с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- проявляет настойчивость, целеустремленность, умение преодолевать трудности.

- предметные результаты:

- знает основную элементную базу (светодиоды, кнопки и переключатели, потенциометры, резисторы, конденсаторы, соленоиды, пьезодинамики)
- знает виды подвижных и неподвижных соединений в конструкторе, принципы работы простейших механизмов, видов механических передач;
- умеет использовать простейшие регуляторы для управления роботом;
- владеет основами программирования в компьютерной среде моделирования LEGO Education SPIKE Prime;
- понимает принципы устройства робота как кибернетической системы;
- умеет собрать базовые модели роботов и усовершенствовать их для выполнения конкретного задания; умеет демонстрировать технические возможности роботов.

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

№ п/п	Год обучения	Дата начала занятий	Дата окончания занятий	Количество учебных недель	Количество учебных дней	Количество учебных часов	Режим занятий	Сроки проведения промежуточной итоговой аттестации
1	1	01.09. 2023	24.04. 2024	34	34	34	Очный	24.04.2024

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Материально-техническое оснащение Программы

- учебная аудитория
- столы учебные 6 шт;
- стулья ученические 12 шт;
- доска учебная 1 шт;
- компьютеры (ноутбуки) 2 шт.;
- набор конструктор LEGO Education SPIKE Prime
- Часть 1 Прикладная робототехника
- Часть 2 Техническое зрение роботов с использованием Trackingcam
- Комплект учебный робот SD1-4-320
- Конструктор программируемых моделей инженерных систем

Информационное обеспечение:

- -Аудио-, видео, фотоматериалы, интернет источники.
- Организационно-педагогические средства (учебно-программная документация: образовательная программа, дидактические материалы).

Материалы сайта https://education.lego.com/ru-ru/lessons Программа реализуется педагогом дополнительного образования, имеющим опыт работы в сфере роботехники с детьми не менее 5 лет, образование высшее педагогическое, является учителем физики, информатики, математике и астрономии.

Календарно-тематическое планирование

No	Название темы	Дата		
1/П	_	план	факт	
	Вводное занятие			
	Что такое "Робот". Виды, значение в современном мире, основные направления применения. Состав конструктора, правила работы.	06.09		
2	Проект. Этапы создания проекта. Оформление проекта.	13.09		
3	Ознакомление с визуальной средой программирования Scratch. Интерфейс. Основные блоки.	20.09		
	Введение в робототехнику. Знакомство с роботами LEGOEducation SPIK	EPrime	L	
1	Обзор модуля Smarthub. Экран, кнопки управления, индикатор состояния, порты.	27.09		
5	Обзор сервомоторов EV3, их характеристика. Сравнение основных показателей (обороты в минуту, крутящий момент, точность). Устройство, режимы работы.	04.10		
5	Сборка модели робота по инструкции.	11.10		
7	Обзор датчика касания. Устройство, режимы работы.	18.10		
	Основы управления роботом			
3	Обзор гироскопического датчика. Устройство, режимы работы.	25.10		
)	Обзор датчика света. Устройство, режимы работы	01.11		
10	Обзор ультразвукового датчика. Устройство, режимы работы. Проверочная работа на тему: "Характеристики и режимы работы активных компонентов"	08.11		
11	Движения по прямой траектории.	15.11		
12	Точные повороты.	22.11		
	Состязания роботов. Игры роботов.			
13	Движения по кривой траектории. Расчёт длинны пути для каждого колеса при повороте с заданным радиусом и углом.	29.11		
14	Игра "Весёлые старты". Зачет времени и количества ошибок	06.12		
5	Захват и освобождение "Кубойда". Механика механизмов и машин. Виды соединений и передач и их свойства.	13.12		
16	Решение задач на движение с использованием датчика касания.	20.12		
7	Решение задач на движение с использованием датчика света. Изучение влияния цвета на освещенность	27.12		
18	Решение задач на движение с использованием гироскопического датчика.	03.01		
19	Решение задач на движение с использованием ультразвукового датчика расстояния.	10.01		
20	Программирование с помощью интерфейса модуля. Контрольный проект на тему: "Разработка сценария движения с использованием нескольких датчиков".	17.01		
21	Битва роботов	24.01		

22	Многозадачность. Понятие параллельного программирования.	31.01	
23	Оператор цикла. Условия выхода их цикла. Прерывание цикла.	07.02	
	Творческие проекты		
24	Оператор выбора (переключатель). Условия выбора.	14.02	
25	Многопозиционный переключатель. Условия выбора.	21.02	
26	Многопозиционный переключатель. Условия выбора.	28.02	
27	Многопозиционный переключатель. Условия выбора.	06.03	
28	Динамическое управление	13.03	
29	Битва роботов	20.03	
30	Правила соревнований. Работа над проектами «Движение по заданной траектории», «Кегельринг». Соревнование роботов на тестовом поле.	27.03	
31	Измерение освещенности. Определение цветов. Распознавание цветов. Использование конструктора Lego в качестве цифровой лаборатории.	03.04	
32	Измерение расстояний до объектов. Сканирование местности.	10.04	
33	Реакция робота на звук, цвет, касание. Таймер.	17.04	
34	Защита проекта «Мой собственный уникальный робот»	24.04	

Оценочные материалы

Вводный контроль - проводится в первые, дни обучения. Он позволяет увидеть не только исходную подготовку каждого обучающегося, но и выявить мотивацию прихода его в коллектив, индивидуальные вкусы, способности, наклонности. Эти знания важны для осуществления дифференцированного и индивидуального подхода к обучению, т.е. получить необходимую информацию для анализа и совершенствования образовательной программы, для чего используются следующие формы контроля:

- устный опрос;
- анкетирование;
- собеседование с обучающимися и их родителями. Текущий контроль:
- наблюдение за выполнением приемов и методов в работе;
- отслеживание активности обучающихся в выполнении ими творческих и практических работ.

Промежуточный контроль:

• срез теоретических и практических знаний, для проверки усвоения материала и перехода на следующий уровень.

Итоговый контроль: итоговая аттестация обучающихся проводится с целью выявления уровня развития способностей и личностных качеств и их соответствия прогнозируемым результатам освоения дополнительной общеразвивающей программы, проводится по окончанию обучения, включает в себя проверку теоретических знаний и практических умений и навыков. Итоговая аттестация обучающихся будет проводиться в следующих формах:

- самостоятельные работы репродуктивного характера;
- тестирование, защита проектов и соревнование.

Методы и формы отслеживания результативности обучения и воспитания: методы:

- открытое педагогическое наблюдение;
- оценка практической деятельности обучающихся;
- фиксация результативности работ обучающихся. формы:
- наблюдение, опрос, практическая и проектная деятельность (проверка подготовки обучающихся осуществляется путем наблюдения, тестирование внутри группы);
- участие в соревнованиях и состязаниях различного уровня

Методические материалы

При обучении по программе используются следующие технологии: группового обучения, проектного обучения, здоровьесберегающие, технология дистанционного обучения.

Групповые технологии - обучение проходит в разновозрастных группах, объединяющих старших и младших общим делом.

Технология проектного обучения - ребята учатся создавать проекты по решению доступных им проблем и умело защищать их перед другими. Поощряется смелость в поисках новых форм, проявление фантазии, воображения.

Технология дистанционного обучения - это способ обучения на расстоянии. Она позволяет решать задачи формирования информационно-коммуникационной культуры учащихся. Её особенность в том, что у детей есть возможность получать знания самостоятельно. Благодаря современным информационным технологиям, учащиеся и педагог могут использовать различные информационные ресурсы.

Данные технологии применяются в случае болезни учащегося или для учащихся при консультировании по отдельным вопросам в соответствии с содержанием программы, а также при неблагоприятной социальной обстановке в образовательной организации, районе, стране по распоряжению вышестоящих органов управления образования.

Педагог обеспечивает регулярную дистанционную связь с учащимися и родителями (законными представителями) для информирования о ходе реализации программы с использованием дистанционных образовательных технологий, электронного обучения, расписанием занятий, графиком проведения текущего контроля и итогового контроля. Для родителей (законных представителей) учащихся разрабатываются инструкции/памятки о реализации программы с применением электронного обучения и дистанционных образовательных технологий с указанием:

- адресов электронных ресурсов, с помощью которых организовано обучение;
- логин и пароль электронной образовательной платформы (при необходимости);
- режим и расписание дистанционных занятий;
- формы контроля освоения программы;
- средства оперативной связи с педагогом.

Образовательная деятельность организовывается в соответствии с расписанием, Занятие с применением дистанционных образовательных технологий и электронного обучения включают:

- разработанные педагогом презентации с текстовым комментарием;
- online-занятие, опНпе-консультация;
- фрагменты и материалы доступных образовательных интернет-ресурсов;
- инструкции по выполнению практических заданий;
- дидактические материалы/ технологические карты;
- контрольные задания.

Структура занятия с применением дистанционных образовательных технологий и электронного обучения содержит основные компоненты, что и занятие в очной форме. При проведении занятия с использованием дистанционных образовательных технологий, электронного обучения, перед учащимися обозначаются правила работы и взаимодействия. В процессе занятия педагогу необходимо четко давать инструкции выполнения заданий.

Для проведения занятий используются следующие способы:

- проведение занятий в режиме онлайн;
- размещение презентаций и текстовых документов в сети Интернет;
- проведение практических занятий: видеозапись мастер-класса педагога, видеозапись выполненной работы учащимися.

ON-LINE консультации проводятся педагогом с помощью электронной почты.

Здоровьесберегающие технологии. Важное значение в проведении занятий имеет организация динамических пауз. Введение этих упражнений в процесс занятия обеспечивает своевременное снятие физической усталости и оживление работоспособности детей. Количество таких пауз (физкультминутки) в течение занятия зависит от возраста детей, от сложности изучаемого материала, от состояния работоспособности. Занятия строятся с учетом индивидуальных и возрастных особенностей, степени подготовленности, имеющихся знаний и навыков.

Учебное занятие - основной элемент образовательного процесса, который проходи в комбинированной форме в двух частях: теоретической и практической.

Теоретическая часть проходит в виде лекций, где объясняется новый материал, практическая часть — закрепление пройденного материала посредством выполнения практических заданий по разделам и темам программы. На занятиях используется индивидуальный подход к каждому обучающемуся, особенно при выполнении итоговой практической работы.

Практическая часть происходит обсуждение способов решения поставленной задачи, выбора инструментов. Комбинированная форма занятий обеспечивает смену видов деятельности и перерывы в работе за компьютером.

Виды дидактических материалов К основным видам

дидактического материала можно отнести:

- 1. Дидактические тексты для обучения работе с различными источниками информации: словарями, справочниками, электронными ресурсами и т.д.
- 2. Обобщенные планы таких видов познавательной деятельности, как изучение научных фактов; подготовка и проведения эксперимента; проведение научно технического исследования;
- 3. Памятки и инструкции, направленные на формирование логических операций мышления.
- 4. Задания на формирование умений анализировать, сравнивать, доказывать, обобщать, устанавливать причинно-следственные связи.
- 5. Задания различных уровней сложности: репродуктивный, преобразующий, творческий уровни.
- 6. Проблемные задания.
- 7. Задания на развитие творчества и воображения.
- 8. Инструктивные карточки, который отражают логическую схему изучения нового материала и способы учебной работы, которые необходимы при этом.
- 9. Карточки-консультации, дидактические материалы, содержащие план выполнения заданий, поясняющие рисунки, с указаниям типа задач и пр.
- 10. Кросворды.
- 11. Рабочие тетради
- 12. Инструкции к практическим работам.
- 13. Справочные материалы по робототехнике.
- 14. Алгоритм выполнения задания.
- 15. Указание причинно-следственных связей, которые необходимы для выполнения задания.
- 16. Модели и имитация исследуемых или изучаемых объектов, процессов или явлений.
- 17. Проведение практических работ в условиях имитации в компьютерной программе реального опыта или эксперимента (ученик может по своему усмотрению изменять исходные параметры опытов, наблюдать, как изменяется в результате само явление, анализировать увиденное, делать соответствующие выводы).
- 18. Тестирование с возможностью самоконтроля.

Список использованной литературы.

І. Литература для педагога.

- 1. Немов Р.С. Психология. Т. 2, М: Владос, 2018.
- 2. Селевко Г.К. Энциклопедия образовательных технологий: В 2 т М.: НИИ школьных технологий, 2017г.
- 3. Столяров Ю.С. Развитие технического творчества школьников. -М.: Просвещение, 2016.
- 4. Филиппов С. А. программа «Робототехника: конструирование и программирование» (Сборник программ дополнительного образования детей Санкт-Петербургского института). 2019г.
- 5. Шиховцев В.Г. Программа «Радиотехника» (Сборник программ дополнительного образования детей Московского института открытого образования). 2018г.

II. Специальная литература.

- 1. Копосов Д. Г. Первый шаг в робототехнику. Практикум для 5 -6 классов Д. Г. Копосов. М.: БИНОМ. Лаборатория знаний, 2017- 292 с.
 - 2. Овсяницкая Л.Ю. Курс программирования робота EV3 в среде Lego Mindstorms EV3, Д.Н. Овсяницкий, А.Д. Овсяницкий. 2-е изд., перераб. И доп М.: Издательство «Перо», 2016. -300с.
 - 3. Лабораторные практикумы по программированию [Электронный ресурс].
- 4. Образовательная программа «Введение в конструирование роботов» и графический язык программирования роботов [Электронный ресурс] http://learning.9151394.ru/course/view.php?id=280#program_blocks
- 5. Программы для робота [Электронный ресурс] http://service.lego.com/ enus/helptopics/?questionid=2 Интернет-ресурс:
 - 1. http://www.mindstorms.su
 - 2. https://education.lego.com/ru-ru

- 3. http://robototechnika.ucoz.ru
- 4. http://www.nxtprograms.com/projects1.html
- 5. http://www.prorobot.ru/lego.php
- 6. https://education.lego.com/ru-ru/lessons?pagesize=24
- 7. https://robot-help.ru/lessons/lesson-1.html
- 8. http://www.prorobot.ru

Литература для родителей, детей

- 1. Клаузен Петер. Компьютеры и роботы. М.: Мир книги, 2017.
- 2. Филиппов С. А. Робототехника для детей и родителей. СПб.: Наука, 2018
- 3. Макаров И. М., Топчеев Ю. И. Робототехника. История и перспективы. М.: Наука, Изд- во МАИ, 2017.